Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Forbs (“wildflowers”) are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects.more » « less
-
ABSTRACT AimsThe community composition of native and alien plant species is influenced by the environment (e.g., nutrient addition and changes in temperature or precipitation). A key objective of our study is to understand how differences in the traits of alien and native species vary across diverse environmental conditions. For example, the study examines how changes in nutrient availability affect community composition and functional traits, such as specific leaf area and plant height. Additionally, it seeks to assess the vulnerability of high‐nutrient environments, such as grasslands, to alien species colonization and the potential for alien species to surpass natives in abundance. Finally, the study explores how climatic factors, including temperature and precipitation, modulate the relationship between traits and environmental conditions, shaping species success. LocationIn our study, we used data from a globally distributed experiment manipulating nutrient supplies in grasslands worldwide (NutNet). MethodsWe investigate how temporal shifts in the abundance of native and alien species are influenced by species‐specific functional traits, including specific leaf area (SLA) and leaf nutrient concentrations, as well as by environmental conditions such as climate and nutrient treatments, across 17 study sites. Mixed‐effects models were used to assess these relationships. ResultsAlien and native species increasing in their abundance did not differ in their leaf traits. We found significantly lower specific leaf area (SLA) with an increase in mean annual temperature and lower leaf Potassium with mean annual precipitation. For trait–environment relationships, when compared to native species, successful aliens exhibited an increase in leaf Phosphorus and a decrease in leaf Potassium with an increase in mean annual precipitation. Finally, aliens' SLA decreased in plots with higher mean annual temperatures. ConclusionsTherefore, studying the relationship between environment and functional traits may portray grasslands' dynamics better than focusing exclusively on traits of successful species, per se.more » « less
-
Abstract Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them.Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure.We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments.Synthesis.Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change.more » « less
An official website of the United States government
